

Effective from Session: 2023-24							
Course Code	B100301T/ BS207	Title of the Course	Molecular Biology		т	Р	с
Year	Ш	Semester	III	4	2	0	4
Pre-Requisite	10+2 Biology	Co-requisite					
Course Objectives		objective of this course is to enable students to understand the concept of different types of genes, DNA replication, inscription, Translation, regulation of Gene expression in prokaryotes and eukaryotes.					

	Course Outcomes
CO1	The students will be able to evaluate genome organization and synthesize functional models for its biological significance.
CO2	The students will be able to analyse the mechanisms of DNA replication in prokaryotes and eukaryotes, and propose strategies for its regulation
CO3	The students will be able to critically evaluate different types of DNA damages and Repair systems and formulate approaches to prevent/combat DNA
	damage.
CO4	The students will be able to critically evaluate translation mechanisms in prokaryotes and eukaryotes and propose approaches for their regulation.
CO5	The students will be able to Integrate knowledge of DNA sequence classes, post-transcriptional and post-translational modifications, and construct
	strategies for regulating gene expression.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Basic Concepts of genome and its organization	Importance of Molecular Biology, Nucleic acid as the genetic material, Central Dogma of Molecular Biology, Model organisms for studying Molecular Biology, Genome and its organization in prokaryotes and Eukaryotes: Gene, Genome, Exon, Intron, regulatory sequence, Nucleosome structure and packaging of DNA into higher order structures.	8	CO1
2	DNA Replication	Semiconservative mode of replication. Mechanism of Replication in prokaryotes and eukaryotes. Enzymes and proteins involved in replication, Theta model and Rolling circle model, Inhibitors of Replication.	8	CO2
3	DNA Damage, Repair and Mutation	Causes and types of DNA damage, Mechanism of DNA repair, Molecular basis and types of mutation. Ames test.	6	CO3
4	Transcription	Transcription process in prokaryotes and eukaryotes. Enzymes, promoter, and transcription factors. Inhibitors of transcription Actinomycin D and α - Amanitin.	8	CO4
5	Translation	Components of Protein synthesis machinery: Messenger RNA, tRNA structure and function, Charging of tRNA, aminoacyl tRNA synthetases, ribosome structure and assembly, Mechanism of protein synthesis in prokaryotes and Eukaryotes.	8	CO4
6	Post-Transcription and Post-Translation Modifications	Post-transcriptional modifications of eukaryotic mRNA (capping, polyadenylation and splicing, post- translational modifications of proteins.	8	CO5
7	Gene expression	Principles of gene regulation, negative and positive regulation, concept of operons, Regulation of gene expression in prokaryotes and eukaryotes; Lac operon and Trp operon concept	8	CO5
8	Classes of DNA sequences	Satellite DNA, Split genes, Pseudogenes, Transposable elements, Retroelements, LINEs, SINEs.	6	CO5
Reference	ce Books:			
1. Lewi	in B. (2000). Genes VII. Oxfo	rd University press.		
2. Wat	son JD, Hopkins NH, Robert	s JW, Steitz JA, Weiner AM. (1987). Molecular biology of the gene.		
3. Lodis	sh H, Baltimore D, Berk A, Zi	pursky SL, Darnell J. (1995). Molecular cell biology.		
4. Brov	vn, TA Genomes (2020).			
1. Lewi	in B. (2000). Genes VII. Oxfo	rd University press.		

e-Learning Source:

https://www.coursera.org/learn/dna-decoded#modules https://www.udemy.com/course/dna-repair-concepts/?srsItid=AfmBOoq-Pm_T0Ly302rWBdh4jKd0TbeHoV_kEfvHIzFilfa6u_aUUZP_

PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
CO1	3	1					2	3	2	1	
CO2	3	1					2	3	2	2	
CO3	3	1	2		1	1	2	3	2	3	
CO4	3	1					2	3	2	3	
CO5	3	1					2	3	2	3	

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2023-24								
Course Code	B110301T/BS245	Title of the Course	the Course Tools and Techniques in Biochemistry		Т	Р	С	
Year	=	Semester	III	4	2	0	4	
Pre-Requisite	10+2 Biology	Co-requisite						
Course Objectives	commonly used b	piophysical techniques li	the understanding of basic principles, working ke Chromatography, Centrifugation, Electroph counters and Scintillation counting.		••			

	Course Outcomes
CO1	The students will be able to critically evaluate differences between different types of chemical bonding.
CO2	The students will be able to formulate experiments using Chromatography and Centrifugation.
CO3	The students will be able to design studies based on Electrophoresis and Microscopy.
CO4	The students will be able to compare various Spectroscopy techniques.
CO5	The students will be able to critically evaluate the applications of radioactivity in biological studies, GM counters and Scintillation counting.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Basics of Biophysics	Chemical bonding – Ionic bond, Covalent bond, Hydrogen bond and Vander-Waals force	6	CO1
2	Chromatography	Introduction & principle of Chromatography, Paper, Thin-layer, HPLC, GLC, Molecular sieving, Ion exchange chromatography, Affinity chromatography	8	CO2
3	Centrifugation	Principle of centrifugation, Basic rules of sedimentation, Sedimentation coefficient, Various types of centrifuges, Low speed centrifuge, High speed centrifuge and Ultracentrifuge, Types of rotors, Application of centrifugation, Differential centrifugation, Density gradient centrifugation- Zonal and Isopycnic.	8	CO2
4	Electrophoresis	Basic principle, Instrumentation and types of Electrophoresis, Agarose gel electrophoresis, PAGE, SDS-PAGE	6	CO3
5	Microscopy	Principle of Light microscopy, Phase contrast microscopy, Fluorescence microscopy, Electron microscopy, TEM and SEM, Permanent and temporary slide preparation	8	CO3
6	Spectroscopic techniques I	Colorimetry, UV-Visible spectrophotometry and Beer-Lambert law, Fluorescence spectroscopy, Infra-Red spectroscopy.	8	CO4
7	Spectroscopic techniques II	Circular Dichroism, Nuclear Magnetic Resonance spectrometry, Atomic absorption, Emission spectrometry, X Ray diffraction, Mass spectrometry	8	CO4
8	Radioactivity	Radioactivity, Types, their importance in biological studies, Measure of radioactivity, GM counters, Scintillation counting.	8	CO5
Refere	nce Books:			
1. Nara	yanan, P: Essentials of Biop	hysics, New Age Int. Pub. New Delhi.		
2. Keith	n Wilson & John Walker: Pri	nciples and Techniques of Biochemistry and Molecular Biology.		
3. Upad	dhyay, Upadhyay and Nath:	Biophysical Chemistry: Principle and Techniques.		
4. Davi	d Sheehan: Physical Bioche	mistry Principle and Applications.		
5. Saba	ri Ghosal & A. K. Srivastava	: Fundamentals of Bioanalytical techniques and Instrumentation.		
e-Lea	Irning Source:			

https://www.biophysics.org/education-careers/education-resources/selected-topics-in-biophysics/biophysical-techniques

PO-PSO	DO1	000	001	004	DOF	DOC	007		DCO2	0000	0004
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
CO1	3	1					1	3		1	
CO2	3	1					1	2		2	
CO3	3	1					1	3		3	
CO4	3	1					1	2		3	
CO5	3	1					1	3	3	3	

Name & Sign of Program Coordinator	Sign & Seal of HOD

Effective from Session: 2023-24								
Course Code	B190302P/BS209	Title of the Course	Molecular Biology Lab	L	т	Р	С	
Year	11	Semester	Ш	0	0	4	2	
Pre-Requisite	10+2	Co-requisite						
Course Objectives	ectives The course is designed to train the students in basic and some advanced techniques of Molecular biology.							

	Course Outcomes
CO1	The students will be able to formulate genomic DNA isolation strategies from bacteria.
CO2	The students will be able to plan experiments for genomic DNA extraction from plant or animal tissues.
CO3	The students will be able to design studies for isolation of plasmid DNA (<i>E. coli</i>).
CO4	The students will be able to evaluate the process of restriction digestion of DNA.
CO5	The students will be able to perform experiments to analyze the size of DNA using Agarose Gel Electrophoresis.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Exp-01	Isolation of genomic DNA from bacteria (E. coli)	4	CO1
2	Exp-02	Isolation of genomic DNA from plant tissue	6	CO2
3	Exp-03	Isolation of genomic DNA from animal tissue	6	CO2
4	Exp-04	Isolation of plasmid DNA (<i>E. coli</i>)	4	CO3
5	Exp-05	Restriction digestion of DNA	2	CO4
6	Exp-06	Agarose Gel Electrophoresis	2	CO5
Referen	ce Books:			
1. Ger	ne Cloning and DNA A	nalysis: An Introduction, 6th Edition by T. A. Brown		

2. Sambrook J, Russell D (2001) Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

e-Learning Source:

https://vlab.amrita.edu/

PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
CO1	3	1					2	3		3	
CO2	3	1					2	3	2	3	
CO3	3	1					1	1		3	
CO4	3	1					1				3
CO5	3	1					1				3

Name & Sign of Program Coordinator	Sign & Seal of HOD

Effective from Session: 2023	Effective from Session: 2023-24												
Course Code	B110302P/ BS246	Title of the Course	Biochemical Tools and Techniques	L	т	Ρ	с						
Year	П	Semester III		0	0	4	2						
Pre-Requisite	10+2 Biology	Co-requisite											
Course Objectives			the students to develop the understanding of Beer's law ctrophoresis techniques.	v, met	hods c	of prote	in						

	Course Outcomes								
CO1	The students will be able to develop the understanding of Beer's Law and formulate experiments for estimation of proteins.								
CO2	The students will be able to plan studies for detection of Amino acids by TLC/ Paper chromatography.								
CO3	The students will be able to evaluate the size of DNA and proteins using Agarose Gel Electrophoresis and SDS PAGE.								
CO4	The students will be able to evaluate methods for isolating mitochondria.								
CO5	The students will be able to judge how to visualize different cells by methylene blue staining								

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO						
1	Exp. 1	Verification of Beer's Law	6	CO1						
2	Exp. 2	Estimation of proteins by Biuret/Lowry method	6	CO1						
3	Exp. 3	Separation of amino acid acids by TLC/paper chromatography	6	CO2						
4	Exp. 4	To perform agarose gel electrophoresis	6	CO3						
5	Exp. 5	Exp. 5 To perform agarose SDS PAGE 6								
6	Exp. 6	To isolate mitochondria by differential centrifugation	6	CO4						
7	Exp. 7	Visualization of cells by methylene blue	6	CO5						
Refere	nce Books:									
1. Nara	ayanan, P (2000) Essentia	als of Biophysics, New Age Int. Pub. New Delhi.								
2. Roy	R.N. (1999) A Text Book	of Biophysics New Central Book Agency.								
3. Plun	nmer D. T., An Introducti	on to Practical Biochemistry 3rd ed., Tata McGraw Hill Education Pvt. Ltd. 1998,								
4. Wils	4. Wilson K. and Walker J., Principles and Techniques of Biochemistry and Molecular Biology, 7th ed., Cambridge University Press, 2010.									
e-Learning Source:										
https://r	nas-iiith.vlabs.ac.in/exp/uv	-visible-spectroscopy/procedure.html								

PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
C01	3	1					2	3	2		
CO2	3	1					2	3	2		
CO3	3	1	1				2	3	2		
CO4	3	1	1				2	3	2		
CO5	3	1					2	3	2		

Name & Sign of Program Coordinator	Sign & Seal of HOD

Effective from Session: 2023-	Effective from Session: 2023-24													
Course Code	B100305V/ BS247	Title of the Course	Molecular Diagnostics	L	т	Ρ	с							
Year	Ш	Semester	Ш		0	0	3							
Pre-Requisite	10+2	Co-requisite												
Course Objectives	-	The objective of this course is to develop an understanding of the basic principle and application of molecular techniques employed in diagnosis of diseases.												

	Course Outcomes
CO1	The student will be able to evaluate the mechanisms of the human genome and critique their association with the pathogenesis of
	common diseases using evidence-based analysis.
CO2	The student will be able to critically evaluate types of infectious diseases (bacterial, viral, fungal, protozoan, helminthic), their transmission
	modes, and propose diagnostic strategies.
CO3	The student will be able to critically evaluate genetic disorders and propose techniques for their diagnosis.
CO4	The student will be able to evaluate different types of cancers and their genetic underpinnings, and analyse the applications of molecular
	diagnostics in human cancer detection and treatment.
CO5	The student will be able to critically evaluate molecular diagnostic tools, and propose their applications in clinical diagnostics and
	research.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction to Human Genome & common diseases	Introduction and mechanism related to the human genome, such as gene expression, replication and genome maintenance. Consequences of mutations and polymorphisms, and impacts of genes and environment on major common diseases, such as cancer, diabetes, vascular, and coronary disease Virtual Lab: Demonstration of Extraction of DNA from Animal Sample	10	CO1
2	Infectious Diseases and History of Diagnostics	Types of infectious diseases- bacterial, viral, fungal, protozoan, and other parasites. Infection mode of transmission in infections, factors predisposing to microbial pathogenicity. Diagnosis of infectious diseases caused by bacteria, fungi, viruses, protozoa, and helminths. Virtual Lab: Demonstration of Gram staining to identify bacteria	10	CO2
3	Major Genetic disorders, its causes & Diagnosis.	Genetic disorders: Sickle cell anaemia, Duchenne muscular Dystrophy, Retinoblastoma, Cystic Fibrosis, and Sex – linked inherited disorders Case Study: A case study on any one of the genetic diseases. (Sickle cell anaemia, Duchene muscular Dystrophy, Retinoblastoma, Cystic Fibrosis or Sex – linked inherited disorders)	10	CO3
4	Cancer Biology and Diagnostics	Different types of cancers, genetics of cancer- oncogenes, tumour suppressor genes, Applications of Molecular Diagnostics for Human Cancers. Case Study: A case study on any type of cancer	8	CO4
5	Molecular Diagnostics Tools	RT- PCR, Animal cell culture, DNA Sequencing, Microarray, Techniques of Nucleic acid Extraction, Real time PCR, Fluorescence In Situ Hybridization. Virtual Lab: Demonstration of Polymerase Chain Reaction	7	CO5
Referen	ce Books:			
,		Patrick R. Murray, Ken S. Rosenthal, Michael A. Pfaller		
		eenwood, Richard C. B. Slack, Michael R. Barer, Will L. Irving		
		Jenni Punt, Sharon Stranford		
"Basic In	nmunology: Functions and [Disorders of the Immune System" by Abul K. Abbas, Andrew H. Lichtman		
0.100				
e-rear	rning Source:			

Vlab.amrita.edu

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4			
CO1	3	1					2	3	2	2	1			
CO2	3	1					2	2	2	2	1			
CO3	3	1	2				1	3	1	3				
CO4	3	1	2				1	2	1	3				
CO5	3	1					2	3	3	3	1			

Name & Sign of Program Coordinator	Sign & Seal of HOD

Effective from Session: 2023-24							
Course Code	B100403T/B S256	Title of the Course	Infection and immunity		т	Р	с
Year	II year	Semester	IV	3	1	0	4
Pre-Requisite	10+2	Co-requisite					
Course Objectives	The objective of this course is to develop an understanding of the basics of infection and immunity						

	Course Outcomes
CO1	The students will be able to analyze and compare the characteristics of various infectious diseases and examine their modes of transmission.
CO2	The students will be able to evaluate and compare various laboratory diagnostic methods for identifying infectious agents
CO3	The students will be able to analyze and compare the structures and functions of antigens, examine the organization of the immune system.
CO4	The students will be able to analyze and compare the structures and functions of MHC molecules and examine the mechanisms of complement activation.
CO5	The students will be able to evaluate and critique various immunological techniques, assess immune response mechanisms, and justify vaccination
	strategies.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO	
1	History and transmission of infectious diseases	Definition and Historical perspectives of infectious diseases, Modes of Transmission and Pathogenesis of Infectious Diseases: Adherence and invasion mechanisms, toxigenesis and virulence factors, Host-pathogen interactions	8	C01	
2	Laboratory Diagnosis of Infectious Agents	Laboratory Diagnosis of Infectious Agents: Sample collection and handling, microscopic examination and staining techniques, Culture, biochemical tests, and serological assays; Infection Control Measures: Standard precautions and isolation techniques, Sterilization, disinfection, and decontamination, Surveillance and outbreak investigation	8	CO2	
3	Immune system organization	History of Immune system, Types of immunity Humoral & Cell Mediated. The cells and organs of the immune system. Innate immunity. Anatomical barriers, cell types of innate immunity, connection between innate and adaptive immunity	8	CO3	
4	Types of Immunity and antigenic determinants	Adaptive immunity: Antigens and haptens. Structure and distribution of classes and substances of immunoglobulins (Ig), Ig fold, effector functions of antibody, antigenic determinants on Ig and Ig super family. Generation of antibody diversity	8	CO3	
5	Structure and functions of MHC molecules	Structure and functions of MHC molecules (MHC I and II), Endogenous and exogenous pathways of antigen processing and presentation	6	CO4	
6	Complement and its activation	Complement and its activation by classical, alternate and lectin pathway; biological consequences of complement activation; regulation of complement activity	6	CO4	
7	Immunological techniques	Inological Immunological methods-Antigen-antibody interactions. Agglutination, hemagglutination. Precipitin reactions in solution and in gels: immunoassays Selection, Antigen presentation, Activation of T and B			
8	Immune response and Vaccination	e response and Immunological tolerance-Primary and secondary. Hypersensitivity and its types. Immune response		CO5	
Reference	e Books:				
		y Patrick R. Murray, Ken S. Rosenthal, Michael A. Pfaller			
		eenwood, Richard C. B. Slack, Michael R. Barer, Will L. Irving			
	3 1 1 1	Jenni Punt, Sharon Stranford			
"Basic Im	imunology: Functions and I	Disorders of the Immune System" by Abul K. Abbas, Andrew H. Lichtman			
e-Learr	ning Source:				

				Course	Articulation M	latrix: (Mappin	g of COs with PO	s and PSOs)			
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
СО											
CO1	3	1					1	3			
CO2	3	1			1		3	2		2	1
CO3	3	1					1	3			
CO4	3	1					1	2			
CO5	3	1			1		3	3		2	1
	•		1.1000 00	rrolation: 2 N	Andorato Corro	lation: 2 Subc	antial Correlatio		•	-	-

Effective from Session: 2023-24							
Course Code	B110401T/BS254	Title of the Course	Enzymes and hormones	L	Т	Р	С
Year	=	Semester	IV	3	1	0	4
Pre-Requisite	UG in Biological Sciences	Co-requisite					
Course Objectives	This course has been designed to teach the student majoring in science all the major aspects of the study of enzymes. The course focuses on the theories of enzyme kinetics, the mechanisms of enzyme catalysis, and immobilization of enzyme.						

	Course Outcomes
CO1	The students will be able to evaluate general properties of enzymes and their classification & nomenclature.
CO2	The students will be able to measure enzyme kinetics.
CO3	The students will be able to analyze mechanisms of enzyme catalysis and enzyme inhibition & activation.
CO4	The students will be able to evaluate multisubstrate enzyme kinetics and enzyme Immobilization and its clinical & industrial use.
CO5	The students will be able to critically evaluate the functions of plant and animal hormones

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO				
1	Classification and nomenclature of enzymes	General properties of enzymes. Mechanism of enzyme action: Chymotrypsin, ribonuclease, activation of transition metal cation, activation by alkaline earth metal cation, nicotinamide nucleotide, flavin nucleotide and adenosine phosphate.	8	CO1				
2	Enzyme kinetics	Michaelis-Menten initial rate equation based on equilibrium assumption, Briggs Haldane steady state approach, integrated form of the Michaelis equation, methods for the determination of Km and Vmax normalized initial rate equation and normalized curves, Haldane relationship.	8	CO2				
3	Effect of factors and inhibitors on enzyme kinetics	Effect of enzymes concentration, pH and temperature on kinetics of enzyme reactions. Enzyme inhibition and activation: Types of reversible inhibitors, qualitative analysis of data, derivation of equations for different types of inhibitions, determination of inhibitor constant, determination of activator constant.	8	CO3				
4	Multisubstrate enzyme kinetics	Multisubstrate enzyme kinetics: random bi-bi, and ping pong reactions. Intracellular localization of enzymes, purification of enzymes and tests for homogeneity.	6	CO4				
5	Applied Enzymology	Immobilization; kinetics of immobilized systems. Isozymes. Allosteric enzymes. Industrial and clinical scope of enzymes.	6	CO4				
6	Plant Hormones	Classification, structural features & functions in Plants: Auxins, gibberellins, Cytokinins, ethylene, and abscisic acid	8	CO5				
7	Animal Hormones I	Classification, structural features & Functions of hormones secreted by endocrine glands: Hypothalamus, pituitary gland- anterior pituitary and posterior pituitary, thyroid gland	8	CO5				
8	Animal Hormones II	Classification, structural features & Functions of hormones secreted by endocrine glands: adrenal gland, Pancreas, gonads	8	CO5				
Referer	nce Books:							
1. Enz	ymes Biochemistry, Biot	technology, Clinical Chemistry Authors: T Palmer, P L Bonner; Woodhead Publishing						
2. Bio	chemistry – Lubert Strye	er Freeman International Edition.						
3. Leh	ninger: Principles of Bio	chemistry (2017) by Nelson and Cox Seventh edition, WH Freman and Co.						
4. Enz	yme Structure and Mec	hanism; Publisher W H Freeman & Co, New York; Alan Fersht						
5. Enz	ymes: Authors: Malcoln	n Dixon, Edwin C. Webb; Academic Press						
e-Lea	rning Source:							
https://o	ttps://onlinecourses.swayam2.ac.in/cec20_bt20/preview							

				Course Articu	ulation Matrix	c: (Mapping o	f COs with PC	os and PSOs)			
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
СО											
CO1	3	1					2	3			
CO2	3	1					2	3			
CO3	3	1					2	3			
CO4	3	1					2	3			
CO5	3	1					2	3			

Г

Name & Sign of Program Coordinator	Sign & Seal of HOD

٦

Effective from Session	Effective from Session: 2023-24						
Course Code	B110402P/BS257	Immunological Techniques Lab	Enzymes and hormones lab	L	т	Р	с
Year	П	Semester	IV	0	0	4	2
Pre-Requisite	10+2 Biology	Co-requisite					
Course Objectives	rse Objectives The objective of this course is to enable students learn about basics of enzymes and hormones						

	Course Outcomes
CO1	The students will be able to design experiments for isolating enzymes.
CO2	The students will be able to test enzyme activity.
CO3	The students will be able judge the effect of varying substrate and inhibitor concentration on the enzyme activity.
CO4	The students will be able to critically evaluate the effect of pH and temperature on the enzyme activity.
CO5	The students will be able to critically evaluate the roles of plant growth hormones.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Exp. 1	Isolation of enzyme crude extract and determination of enzyme activity	6	CO1
2	Exp. 2	Study of the effect of pH on the enzyme activity.	6	CO2
3	Exp. 3	Study of the effect of varying substrate concentration on the enzyme activity and determination of Km and Vmax.	6	CO3
4	Exp. 4	Study of the effect of temperature on the enzyme activity.	6	CO4
5	Exp. 5	Study of the effect of inhibitors on the enzyme activity.	6	CO4
6	Exp. 6	Study the effect of any plant growth hormone	6	CO5
Refere	ence Books:			
		OGY THEORY & PRACTICAL, 5TH SEM. (KALYANI PUB.) 2. Talwar Gupta A Handboc A.H. Lichtman, Saunders, Basic Immunology, W.B. Company	ok of Practica	Il & Clinical

e-Learning Source:

https://www.ucl.ac.uk/~ucbcdab/enzass/enzymass.htm

PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
CO1	3	1					2	3	2		
CO2	3	1					2	3	2		
CO3	3	1					2	3	2		
CO4	3	1					2	3	2		
CO5	3	1					2	3	2		

Name & Sign of Program Coordinator	Sign & Seal of HOD

Effective from Session: 2023	-24							
Course Code	B100404P/	Immunological	Immunological Techniques Lab	-	т	Р	C	
	BS258	Techniques Lab		-	-	•	Ŭ	
Year	Ш	Semester	IV	0	0	4	2	
Due Demuisite	10+2	Co no mulaito						
Pre-Requisite	Biology	Co-requisite						
Course Objectives	The objective of this course is to enable students learn about basics of immunology, types of Blood grouping, cell counts,							
Course Objectives	ELISA, Ouchte	erlony Double diffusion	(ODD) and Separation of serum from blood & precipitation	of Imr	nunoglo	obulin	s	

	Course Outcomes
CO1	Student will be able to Critically Evaluate the blood groups and the variations in differential WBC counts.
CO2	Student will be able to Evaluate the effects of detergents and concentrations on RBC membrane.
CO3	Student will be able to Evaluate the applications of ELISA and Dot ELISA, interpreting the relevance of these assays.
CO4	Student will be able to Analyze the antigen-antibody interaction pattern by Ouchterlony Double diffusion assay.
CO5	Student will be able to Analyze the separation of serum from blood & precipitation of Immunoglobulin.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Exp. 1	Blood grouping	6	CO1
2	Exp. 2	Differential Count of WBC	6	CO1
3	Exp. 3	Detergent lysis of RBC	6	CO2
4	Exp. 4	Dot Elisa	6	CO3
5	Exp. 5	ELISA – Demonstration	6	CO3
6	Exp. 6	Ouchterlony Double diffusion (ODD)	6	CO4
7	Exp. 7	Separation of serum from blood & precipitation of Immunoglobulins	6	CO5
Refere	nce Books:			

1. Asim Roy Kumar, 2. Talwar Gupta A Handbook of Practical & Clinical Immunology 3. A.K. Abbas and A.H. Lichtman, Saunders, Basic Immunology, W.B. Company

e-Learning Source:

https://onlinecourses.nptel.ac.in/

PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4
со	PUI	P02	P05	P04	P05	PUO	P07	P301	P302	P305	P304
CO1	3	1					3	3	2		
CO2	3	1					3	3	2		
CO3	3	1					2	3	2		
CO4	3	1					1	3	2		
CO5	3	1					1	3	2		

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HOD